

NRC Airborne Research: Facilitates and Research Focus

Mengistu Wolde R. Srinivasan, A. Brown, D. Marcotte, G. Leblanc, L. Auriti, B. Gubbels, G. Craig

Collaborators: EC Cloud Physics and Severe Weather Research Section

Workshop on Suborbital Platforms and Nanosatellites Montreal, 14-16 April 2010

IAR buildings and facilities

- 4 sites (2 in Ottawa, 2 in Montreal)
- 15 buildings (565,000 sq.ft.)
- Major facilities:
 - 8 wind tunnels
 - 9 research aircraft
 - Full-scale structural test rigs
 - Engine and combustion test cells
 - Materials characterization and testing equipment
 - Aeroacoustic reverberant chambers
 - Lubrication/tribology test rigs
 - Flight Recorder Playback Centre
 - Manufacturing research facilities

Flight Research Laboratory

Expertise and facilities in full-scale aircraft-based experimentation for flight test and airborne research

- Flight mechanics & avionics
- Airborne research
- Flight Recorder Playback Centre

Capabilities:

- Flight test
- Modeling and simulation
- Aircraft systems evaluation
- Airborne sensing of the earth and atmosphere
- Aircraft accident and incident analyses

Our Program of Work

Airborne Research

Instrumented access to the atmosphere and environment.

Flight Mechanics and Avionics

Studying the aircraft, the pilot and related systems

Flight Recorder Playback Centre

 the investigation of aircraft accidents and incidents and the improvement of safety related systems

Who we work with (Clients and Collaborators)

OGD

Universities

International

Industry

NRCaerospace

NRC Fleet

Flight mechanics
Test Pilot Schools
UAV collision aviodance

Microgravity – CSA, Universities
De-icing and anti-icing technologiesTC, NASA, FAA

NVG Flight Tests Forest fire detection Test pilot school

Flight Test Courses – Universities
Airborne symbology
Test Pilot Proficiency Flying

Helicopter handling qualities,

Modern control systems

Helicopter/pilot interface

Test Pilot Proficiency Flying Aeromedical physiology Aerodynamics research

Support Airborne Research in Canada

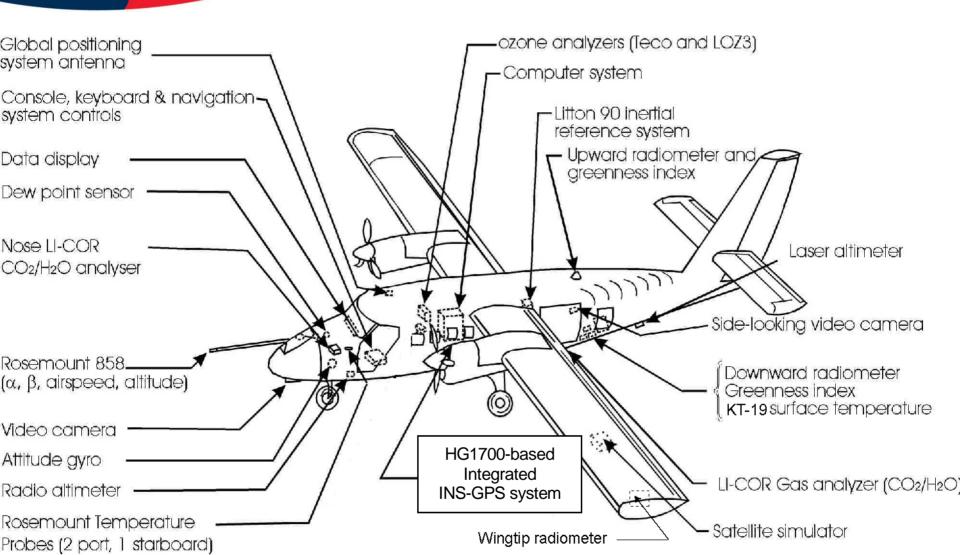
- → Instrumented by NRC, EC and DND, Universities and Others
- → Multiple aircraft supporting diverse research applications

Program Manager: Dave Marcotte

Airborne Research

The NRC Twin Otter Atmospheric Research Aircraft

Ramesh Srinivasan TO – Facility Manager


NRC Twin Otter - *DHC-6*Atmospheric Research Facility

Experiments in :

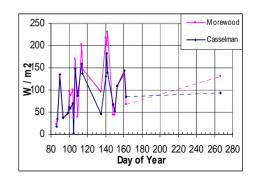
- Flux measurement (surface-atmosphere exchange of energy and GHG).
- Remote sensing of the cryosphere (microwave radiometers)
- Air pollution
- Atmospheric turbulence
- Flight mechanics
- Remote sensing for agriculture (hyperspectral)
- Remote sensing for defence (electro-optics)
- The Twin Otter is supported by a research team with many years' experience in conducting airborne field experiments.

Twin Otter Instrumentation

NRC-CNRC NRCaerospace

Airborne Flux Measurement

In partnership with Agriculture Canada

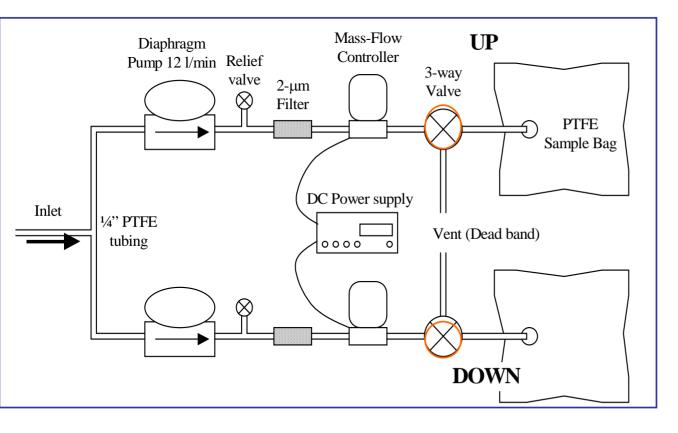

The Eddy Covariance method requires:

The vertical wind from the nose gust-boom, and

- Temperature (3 probes) → Sensible Heat flux (H)
- H₂O mixing ratio (2 LiCors)
 → Latent Heat flux (LE)
- CO₂ mixing ratio (2 LiCors)
 Carbon dioxide flux
- O₃ mixing ratio (TeCO & LOZ3) → Ozone flux
- ? Lack of fast-response analyzers for:
 - Nitrous oxide N₂O
 - Methane CH₄
 - Other trace gases

Requires more ingenious methods of measurement.

... Internal R&D project might offer a solution ... in the future.



Current solution is the REAS ...

- Alternate to Eddy Covariance (EC) technique.
- Measures trace gas fluxes, when fast-response analyzers N/A.
- Air is sampled from up & down drafts into 2 separate reservoirs.
- In EA, sample flow-rate proportional to vertical gust velocity, w.
- In REA, this requirement is 'relaxed', (i.e. flow-rate kept constant, with full flow into up **OR** down reservoir)

$$F_{\chi} = \overline{w'\chi'} = A\sigma_{w} (\chi_{Up} - \chi_{Down})$$

Tunable Diode Laser

- Flow rates 12 liters/min
- Valve time constants approx. 10 ms

NRC Hyperspectral SWIR Airborne Spectral Imager (SASI) - Dr. G. Leblanc

Obtained in 2003 from ITRES Ltd., can currently can be installed aboard the NRC's Convair and Twin Otter Aircraft.

Specifications:

Spectral Range: 850nm-2500nm

Spectral Channels, 160

Output Image: 14 bit

Frame Rate: 16ms

GPS/INS: CMIGIT III

Past/Present Projects:

Camoflauge Detection

Ice In-Cloud Determination

Bio-Mass Determination

Water Stress

Roadside IED Detection

Police Research

Mass Graves Detection

Integration of Aeromagnetics and Hyperspectral Data

Validation of Radiometric Calibration

Real-time Hyperspectral

Collaborators:

Defence Research and Development Canada

Agriculture and Agro-Food Canada

Canadian Police Research Center

Royal Canadian Mounted Police

McGill University

University of Alberta

York University

McMaster University

We intend on having a VisNIR (300-1000nm) companion instrument by the summer of 2010

Project: Re-development of the NRC T33 for High Altitude Atmospheric Research (HAARC) - a NIF initiative

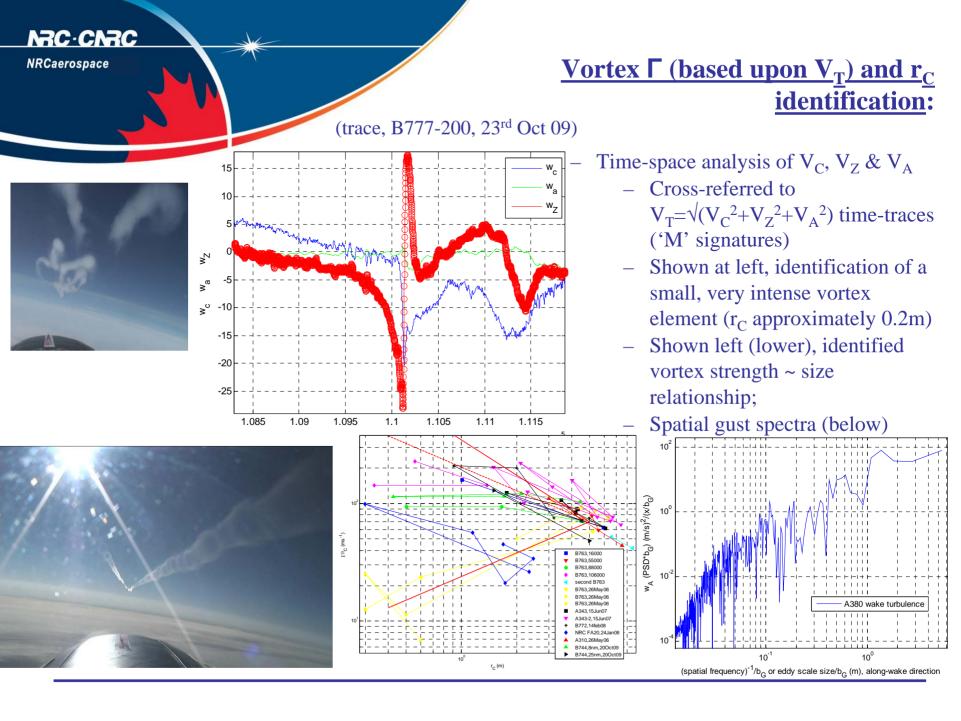
 Need: The diverse and rugged aircraft suitable for high altitude research (turbulence, aircraft emissions etc)

Clients & Collaborators:

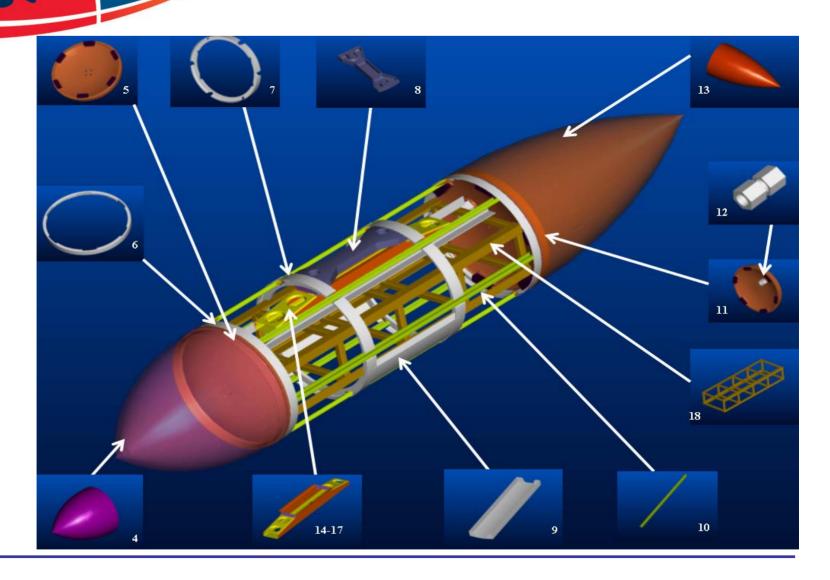
 FAA, EuroControl, TSB, Transport Canada, ICPET, GTL of IAR, Environment Canada; NR Canada, NASA, Aerodyne

HAARC

HAARC


Major Achievement/Highlights:

- Successful development of flight profiles for turbulence and emissions research, using jets in commercial service
- Application of 600 Hz sophisticated data acquisition instrumentation to the research – wake turbulence
- Impact: WakeNet, AIAA, EC etc
- \$300k+ Aviation Emission Environmental Measurements (AEEM) PERD Award



T33 Instrumentation Pod – in design

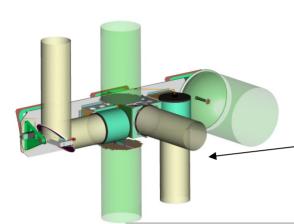
NRC-CNRC NRCaerospace

NRC CT-133 HAARC

NRC Convair-580

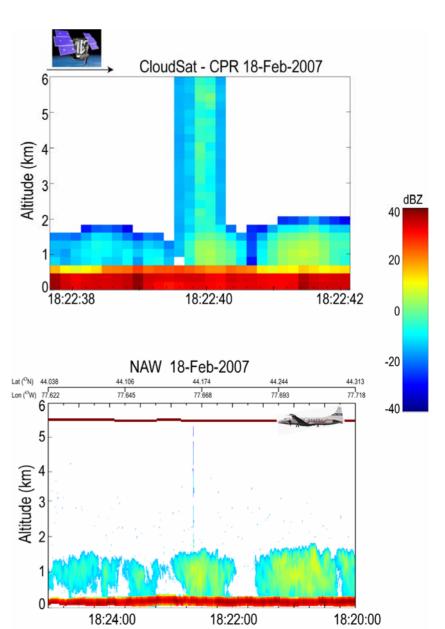
- * Atmospheric and aircraft state parameters NRC/EC
- Cloud
 microphysics –
 EC/Others
- * Atmospheric chemistry (Aerosol, IN, CCN...)
- * Airborne remote sensing radar, radiometer NRC/EC

Projects - Collaborations



NRC Airborne W and X-bands radar (NAWX)

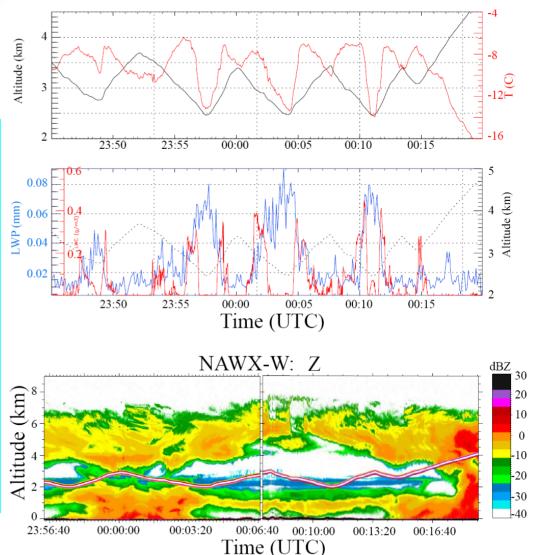
	NAWX	W-band	
)	Transmitted Frequency (GHz)	94.05	9.41
	Peak Tx Power (KW)	1.7 - typical	25 (split b/n two ports)
	Polarization	Co and Cross	
	Doppler	Pulse Pair and FFT	
	Pulse Duration (µs)	0.1 - 10	
	Max PRF (KHz)	20	5
	Ant. 3 dB BW (°)	0.75	
	Antenna ports	5	4
	View direction	Un down and side	Un down and side


More details/updates: http://www.nawx.nrc.gc.ca

Feb 18-2007: Boundary layer Cu Clouds

- → A/C at ~ 6 km at the time of the CloudSat pass
- → Good agreement of cloud top boundaries by CloudSat and NAWX
- → Difference b/n CPR and NAWX near the surface

NAWX / CloudSat 18-Feb-2007


NRCaerospace

→ Multiple layers- Upper layer:
All ice and shallow layer of
supercooled drops at the top of
the lower layer at T of ~ -10C°
→ Convair made repeated
porpoise maneuver in the
liquid layer
→ Good correlation between

GVR and in-situ LWC

measurement

 \rightarrow Preliminary work on retrievals of r_{eff} and N form combined GVR and NAWX data show good agreement with in-situ data (Wolde, Pazmaney, Hudak –

33rd AMS radar conference, Cairns, Australia, 2007)

NRCaerospace

Fleet Review

- FRL Committee 2009 (\$2M NRC)
 - Review existing aircraft assets (aging, research need, long term maintenance / supportability..)
 - Develop a plan for future acquisition Fleet Review
 - Inputs from FRL staff, collaborators and clients
 - Categories: Small UAV, Cabin Class Jet/Falcon replacement
 - High Altitude Research Aircraft
 - Non-cabin Class Jet
 - Convair replacement
 - Reported to IAR with recommendation (LTR-FR-307 November 2009 L. Auriti and R. Erdos)